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Very Long Baseline Interferometry (VLBI) is a method for observation of extra-
galactic radio sources which appears to have potential for precise long-distance Earth
surveying, clock synchronization and spacecraft navigation. For the past several years,
many researchers at JPL and elsewhere have been working to establish the accuracy of
VLBI observations. The intent of the work reported here has been to review the principal
components of the VLBI instrument in order to estimate and/or bound the systematic
error contributions. In this first of a series of articles, we establish the definitions and
tools which we need in order to apply filter transfer-function analysis to the VLBI
receiver, and we use it to estimate the sensitivity of the VLBI receiver to plausible filter

variations.

l. Introduction

Very Long Baseline Interferometry (VLBI) is a method for
observation of extragalactic radio sources which appears to
have potential for precise long-distance Earth surveying, clock
synchronization and spacecraft navigation (Ref. 1). For the
past several years, many researchers at JPL and elsewhere have
been working to establish the accuracy of VLBI observations.
The intent of the work reported here has been to review the
principal components of the VLBI instrument in order to
estimate and/or bound the systematic error contributions. In
this first of a series of articles, we establish the definitions and
tools which we need in order to apply filter transfer-function
analysis to the VLBI receiver, and we use it to estimate the
sensitivity of the VLBI receiver to plausible filter variations.
We also estimate the error contributions due to uncertainty in
modeling of the receiver channels with bandwidth synthesis
processing. In the second article of this series, we will estimate
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error contributions from channel modeling with full-band
sampling.

Section II of this article is an overview description of the
VLBI instrument. In section III we develop the expected
cross-correlation of the interferometer samples in terms of the
receiving filter transfer functions and the sampling clock
parameters, and we review features of the delay estimation
process which admit systematic errors. Supporting transform
analysis for this development appears in Appendix A. The
sensitivity of the VLBI time delay to filter variations is
estimated in section IV. The principal result of this section is
that quite plausible variations in these filters can result in
changes in the VLBI time delay of 5-15 cm. In section V, the
last section of this article, we estimate the error potential
inherent in the necessary receiver channel modeling for
bandwidth synthesis data. A phase calibrator which is itself



assumed perfect is used in some parts of this analysis. The
principal result of this section is that errors due to channel
modeling, which can be on the order of 0.5 to 1 m without
calibration, can be held to generally below 1 cm if two tones
from a *“‘perfect” phase calibrator are placed in each of the
synthesis channels. Evaluation of a real phase calibrator is
another subject.

ll. The VLBI Receiving-Processing System

Figure 1 shows the portion of the VLBI system which is of
concern here. The radio-source and transmission path, while
shown, are not explicitly of concern, and are included as a
reference platform for the behavior of the system. The radio
source is assumed to be a point source, and the transmission
path nondispersive.

The radio source emits a low-level white noise process
which travels by separate paths to receiving stations. The
transmission path delays, ‘d,” and ‘d,’, are time-varying, in
general, as are the oscillator reference phases, ‘¢,” and ‘¢,’,
and the delays into the samplers, ‘gy’, and ‘g,’. The station
frequency and time references provide a coordinate system for
the description of the received signals. The delays to the
stations are specified as “backward-looking,” with respect to
their time of arrival at the receiving stations. As expressed in
general coordinate time,

e (t) = e[t-d (]
(1)

1l

e'z(t) e[t-d,(1)]

The reconciliation between this general coordinate time and
the two station time-coordinates is a part of the job of the
parameter estimator.

Each receiving system adds its own (independent) white
gaussian noise process, of temperature approximately 20 K at
the maser amplifier. The maser amplifier contains the filter
H{s), with a variable gain and bandwidth. A plausible model
for the maser-amplifier when operating in wideband mode is a
double-tuned filter plus a transmission line. The total maser
delay is ~16 m (Ref. 2).

The output of each maser amplifier, still at microwave
frequencies, is mixed with a locat-oscillator before subsequent
filtering by G,(s) and sampling. The filters G, (s) are assumed to
be at least zonal-low-pass, so that second-harmonics are
rejected. The mixer itself has a noise temperature of several

thousand K, which is negligible as long as we are near the
high-gain region of H,(s).

For wideband-sampling (WBS), the filters G;(s) represent
the (50-MHz) IF filters of the Block III or Block IV Receivers.
For bandwidth-synthesis (BWS) processing (Ref. 3), the G,(s)
represent the final narrow-band channel filters, while the
pertinent portions of the IF filters are absorbed into the RF
filters H,(s). When needed, we will include other details of the
physical system, such as the implicit filtering of the quadrature
SSB demodulator into the two-filter model shown by appro-
priate interpretation of the H,(s), G,(s) parameters.

The sampling of the data at the output of the filters G;(s)
establishes a firm and manipulable coordinate system within
which the subsequent cross-correlation and processing are
performed. Proper interpretation of the correlation products
requires a precise understanding of the continuous and
time-varying time coordinates within which the receiver filters
and the problem geometry are separately defined. Jitter of the
sampling operation per se and pseudorandom transport lags of
the receiving system are included within quantizer delays
q{t;). The correspondence between station times 7, ¢,, which
establishes the coordinate base for the data processing, and the
general coordinate time within which the problem geometry is
intrinsically defined, will be established by a redefinition of
the geometric time delays.

Ill. Correlation and Estimation for
VLBI DATA

In this section we derive the cross-correlation to be
observed between the two sampled data streams as a function
of the physical filters which precede the sampling.

At the sampler, the station clock which controls the
sampling places an absolute and incorruptible time base into
the data. Except for phase noise, this same time base is also
coherent with the local oscillator and any calibration system
which may be used. It is convenient, furthermore, to consider
the filters at a given station as defined within the time
reference system of that station’s clock. This is consistent with
our belief that the best knowledge of the filter characteristics
at a station will come through measurements during or in
conjunction with a VLBI experiment. Such measurements will
of necessity specify these filter characteristics with respect to
the station time-base.

Let the input to the receiver’s low-noise-amplifier be
specified as @, (7,) within the reference frame of the station 1
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clock. The input to the station 1 sampler ¢, (#,) can be written
by inspection as

H7a,
"1(’1):f gty -q,(e)-n1

n
{COS [w1n1+¢1(n1)]f 1h(nl-él)a1 (El)dsl}dnl
(2)

where g,(x), h,(x) are the impulse responses of the filters
G,(s), H,(s), and q,(¢,), and ¢,(n,) are the sampler input
delay and the local-oscillator phase, respectively.

To develop ¢,(¢,) further, in terms of the radio-source
emissions, and permit the calculation of the cross correlation,
a,(¢,) needs to be expressed in terms of e(r) and d,(¢), both
of which are known as functions of general coordinate time,
and not as functions of station time. Let the function Au,(z,)
represent the correction term: Station ! clock-time minus
general coordinate time;i.e., if

1 is Station 1 clock time
then (3)

t =1, - du ()
is the corresponding general coordinate time.

In general coordinate time z, the radio-source signal at the
station 1 antenna e’ (7) is

€)= elr-d (0] 4

where e(¢) is the radio source emission at time ¢, and d,(z) is
the backward looking time delay of the path to station 1 from
radio source.

Let us define a clock-adjusted delay function kl(z‘l) to be
k(t) = But)+d, [t - Au (2))] 5

As both d,(¢) and Au, () are slowly varying functions, so too
is k,(r,). The input to the Station 1 receiver is then expressed
in Station I clock time as

a(t)) = et -k (1)) +n(2) (6)
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A completely parallel notation applies to the signals at
Station 2.

Let us expand kl(zl) in the neighborhood of 7, such that

k(E) = k() + 2k t) & -0) (D
=1

From physical considerations, we expect that {k, (¢,)| will be
less than 1075, |k ,(¢,)l less than 10!! and subsequent
terms correspondingly smaller. We note further that the filters
G,(s,), H,(s,) are relatively wideband and thus have short
memory. Let g, Oh (7, - ) denote the combined impulse
response of these filters as in Eq. (2). We expect the magnitude
of g,®h (f, - £,) to be such that the contribution to ¢,(¢,)
from a,(&,) is negligible (e.g., below 10719 of the totat) for all
g, such that [f, - £,1> 1074, From the anticipated magnitude
of the k;(z,) terms in Eq. (7), the error in estimating &, (§,)
by a linear approximation in the neighborhood of 7, ie.,
k(&)= k() - Kk (e))c (&, - 1)l is negligible (e.g.,
below 10718) for all [r; = &, <107%. Thus, we have:

K (E) <k (1) 4k, (6) - (&, - 1) ®)

as a valid approximation to k,(£,) for use in evaluating the
needed cross-correlations via Eqgs. (2) and (6). The precise level
of accuracy of this approximation is a function of the specific
filters (and processing) used, and can be evaluated later, if
desired. The validity of this approximation within the context
specified permits the use of transform-domain techniques for
performing the convolutions in Eq. (2). For notational
convenience, we will define new constants p,, and p, ,, which
are implicitly functions of r,, and reinstate the explicit
dependence when necessary. Define

py = k(t)-ky ()1

1

Py kll(tl)

S0

k(&) =p tp & 9

in the neighborhood of 7.

We also need to assume that ql(tl) and ¢,(n,) are slowly
varying, and that ¢,(n,) is well approximated by ¢,(r,)
within the context of the convolutions in Eqg. (2). The



corresponding definitions and assumptions apply to Station 2
filters and data.

Within this context, the input to the Station i receiver is

aft) = elt;~ p,

Pt +ndt) (10)

and the input to the Station / sampler-limiter is

9
¢, (2,) = f g(t;-a;~n) [COS(w,-n,. *9)

7’1
f h.(n,- &)

et~ p, - p, &)+ n,(E)] dé] (11)

where we have suppressed the explicit dependence upon r,
and 7, for the functions g;, ¢;, as well as for p, p;,, as
declared earlier.

&

The processing of VLBI data is performed upon a sampled
hard-limited version of the signals ¢;(1). The cross-products of
data samples from the two stations exist only at discrete and
regularly spaced values of #; and ¢,. Calculation of the
expected value of these cross-products from the foregoing
definitions is straightforward but tedious. and is performed in
Appendix A. Denote this expected value as SL(T3,¢3I[1,12)
when written in terms of the two station clock-time indices.
For weak signals, the typical case. we have from the appendix
that

/(1,001 ,.1,)
VA (00)-4_,(0.0)

-
4
3 [to

S, (73.¢3:t1 t (12)

where S'( ) is the cross-correlation for nonlimited samples,
A4, .) are the ith receiver autocorrelations, and with some
manipulation,

1‘2—[1—k2+k1 .l—k

21 21

t.-t -~k tk
= . - et - - 2 1 2 1
¢3—w2 t2+¢>2 W, tl ¢1 wz( 1—k21 )

/
YH,(-n+jw,)

i -k,
“H | (n- Jw) p
21
[ 1-k,,
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1-k,,
+io. _
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[ -k,
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[ -k,
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GRS 2)l—k21 Jw,

N+N +joeo
4,00 = f dn

. 2m
jeoo

[G,.(-n)H,- (mHjw)H, (n-jw)G, (n)
tG(-mH(-n-jw)Hn+ /'w,-)G,-(n)]

The difference in the clock-adjusted delay terms, k(z,) -
k,(t,), is a combination of a diurnal sinusoid plus fixed and
linear offsets and other effects due to the propagation
medium. Over any single VLBI observation, it can usually be
assumed that this clock-adjusted differential delay is known a
priori except for an unknown fixed and (small) linear offset
which must be solved for in order to characterize the
observation. The correlation amplitude, or the radio source
noise density V,, is also an unknown to be determined. The
receiving instrument itself can add two more unknown
parameters to the set which must be solved for, namely, the
local oscillator differential phase and phase-rate relative to the
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station standards. As can be deduced from Eq. (13), the
differential delay induces a phase effect which is indistinguish-
able from the instrument-induced phase effect. Thus, to
characterize any one VLBI observation, there are five param-
eters: correlation amplitude, delay, delay-rate, phase, and
phase-rate, which are unknowns to be solved for. In principle,
these five parameters could be extracted directly from the
bit-wise cross products, although in practice pre-sums (Ref. 4)
are generated to reduce the amount of computing that must be
done. For the purposes of this present section, we will assume
that this intermediate step is non-lossy, and produces a result
identical to that which would be obtained directly from the
bit-wise cross products.

To a communications-oriented engineer, the “obvious”
technique for estimating the parameters of interest is that of
maximum-likelihood, or a numerically tractable approxima-
tion to it. To others, the method of minimum mean-square
error (MSE) fit seems proper. In either case, an assumed model
for the receiver’s filter structure is an important part of the
estimation procedure. Mismatch between this model and the
actual cross-correlation appears to be the sole source for biases
in the estimates. The minimum MSE, or least-squares estima-
tion procedure is at least an approximation to maximum
likelihood that should produce estimates which are “close” in
some sense. In particular, we note that the linear term of the
Barankin (Ref. 5) lower bound to the RMS deviation of a
parameter estimated via maximum likelihood for a process
embedded in Gaussian noise is identical to the formal standard
deviation for that same parameter when estimated by the
method of least squares.

The linear least-squares procedure is defined as follows
(Ref. 6): Let x be an m-vector of parameters, 4 a k-by-m-
matrix of coefficients, ‘n’ a k-vector of noise perturbations,
and y a k-vector of observations, such that:

y=4-x+n (14)
Assume that n has zero mean with covariance matrix

<n'nT> (15)

where -+ denotes expected value, and T denotes trans-
pose. Then the least-squares solution for x, X is given by

X =Ty taytaTyly (16)
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which has formal error covariance on X given by

CX,-XTD =Ty 1ay! (17)
when
-<X>

A non-linear problem such as that posed by parameterizing Eq.
(13) may be solved by assuming that it is incrementally linear
in the neighborhood of some approximate solution and then
solving an iterative series of (hopefully converging) linear
least-squares problems. If such linearization is valid at the final
solution point, and if the norm of the formal error covariance
Eq. (17) is small, then the formal error covariance of the
linearized problem is also the formal error covariance of the
nonlinear base problem. The A-matrix is to be interpreted as
the matrix of partial derivatives of the k observation values
with respect to the m parameters.

The [ + 13t step of this iterative procedure is given by

=X ATV la) T AT y - Y(X)] (18)

where the subscript on 4, indicates that the partial derivatives
which comprise this matrix are evaluated at Xl, the prior best
estimate of the parameters X. Y(X ) is the modeled expected
value of the observable y, evaluated at the parameter point X
Convergence is indicated when no significant change occurs in
XIJrl This will occur at the “true X if the functional
dependence of Y(X) upon X is correctly specified, but may
occur almost anywhere else if our model is wrong.

This feature of the processing implies that there is in fact
no bias built into the system until the estimation of
parameters. Even phenomena as apparently insidious as multi-
path are but linear filtering operations which can be modeled
and their effect eliminated as long as this effect is not so severe
as to destroy the 1:1 mapping of input to output. They may
cause severe degradations, but not bias errors, if properly
modeled.

In later sections, when we attempt to evaluate the biases
which result either from our lack of knowledge about the
system, or laziness in developing the model used to estimate
parameters, we will assume that such biases are small, within
the linear range of the final iteration step Eq. (18). With this
assumption, we can compute the bias for a model mismatch
directly from Eq. (18) by replacing the observed y with a
correct model for Y()?l). Furthermore, if the bias is not large,
we could equally well approximate the bias for some “pro-



posed model” if we knew what the “correct model” was and
solved Eq. (18) using the “proposed model” as the observed
vector y and the “correct model” as the model for functional
dependence. This latter form is more convenient for reviewing
a wide variety of proposed models, and will be used in the
following sections.

IV. Sensitivity to Receiver Filter Variations

As noted earlier, bias errors in the estimation of the VLBI
cross-correlation parameters arise predominantly from mis-
match between the model for the receiver filter structure and
the receiver itself. For this section, we will assume that we
know exactly the form of the receiver filters, but know the
filter parameters with some small error. This error could arise
from variations in filter component values during manufacture,
from errors in measurement of the parameters, or from
environmental effects (predominantly thermal) during opera-
tion of the system. Such error is of particular interest when we
are not using real-time calibration. If properly done, calibra-
tion should remove most of the variation observed.

For specificity, we will assume that the maser front-end
amplifier and mixer-amplifier //(s) correspond to three pole-
pair filter functions which were observed in a VLBI experi-
ment (Ref. 7). For bandwidth synthesis operation, the final-
filters G(s) correspond to 7-pole Butterworth filters with
2-MHz passbands (Ref. 8). Filter functions for the quad-
hybrids which implement a physical single sideband (SSB)
demodulator are assumed to be very simple 4-pole networks
covering 0.1 to 2 MHz (e.g., Ref. 9).

Variations in the discrete component filters can be reason-
ably anticipated to be on the order of one part in 103 due to
environmental changes. Variations in manufacture could be
more than one part in 102 unless special care is taken in
selecting components. The low-noise maser amplifier is con-
siderably more stable than this, but is subject to manual
tuning. so variations between experiments could be on the
order of a few parts in 103. Within any one experiment,
laboratory evidence (Ref. 2} suggests that variations can be
held to one part in 105 or 106. But recent field tests in
preparation for the Pioneer Venus atmosphere wind experi-
ment (Ref. 10) observed narrow-band group-delay variations
on the order of a nanosecond, which corresponds to filter-
parameter changes of a part in 104, far in excess of the
laboratory experience.

For the numerical results to be presented, the offset in
correlation parameters is calculated using Eq. (18) for errors in
filter pole positions of one part in 104. For the results to be

presented, the pre-whitening filter =1 is ignored and treated
as an identity matrix. Poles are adjusted one at a time with the
exception that complex pole pairs are moved pair-wise, with
their real and imaginary parts varying individually, as befits
actual physical parameter variations. Variations of this magni-
tude appear to be within the linear range of the MMSE
parameter-estimator so that parameter biases for the antici-
pated physical variations can be taken directly from these
calculations. The anticipated overall delay variation will be
interpreted to be the root-sum-square (RSS) of the effects of
varying the individual filter parameters, since the parameters
will all move under the environmental forces, but not
coherently.

Our interest for this section is exclusively on the effects of
filter changes, so we must avoid errors in calculation due to
“end-effects” from the finite-length data record. This can be
done directly by working with a data record which is long
enough so that whatever end-effects may exist are reduced to a
negligible level relative to the complete “traces” of the
cross-correlation function which occur through the middle of
the record. We can also approximate this long-record process-
ing by utilizing precisely one trace of the cross-correlation
function covering a delay-distance equal to the number of lags
to be used in normal processing. Since this “trace-mode” is
computationally much cheaper, it will be used in the majority
of our calculations, and the results verified by a few
calculations with long records.

Figure 2 (from Ref. 7) shows the assumed passbands for the
maser front-end amplifier and mixer amplifier. Each receiver
exhibits three distinct complex pole-pairs, two of which are
probably in the maser-amplifier itself, and the third in the
succeeding electronics. The effect of filter pole motion on
parameters estimated for the cross-correlation of these two
passbands was calculated for full-band sampling using an 8-lag
cross-correlation trace at doppler of 1 X 1075, Table | gives
the offset in delay and phase caused by changes of one part in
104 of the imaginary parts of the filter pole-pairs. Offsets
caused by the real-parts of these filter pole-pairs were observed
to be typically 2 orders of magnitude smaller than those
caused by the corresponding imaginary part, and thus were not
included in Table 1. Identical results were obtained at
1 X 1077 doppler. This example was also calculated for a
record length of 5 sec at 1 X 1075 doppler, with a resultant
RSS time delay offset of 0.22 ns, reasonably close to the 0.23
ns found by the single-trace calculation. If, as discussed above,
we can anticipate variation in the maser-amplifier of one part
in 10%, we should anticipate a related time-delay estimate
offset of about 0.23 ns, or 7 ¢m, equivalent path-length, which
is variable and dependent upon environmental factors.
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Bandwidth synthesis operation considerably complicates the
task of understanding the receiver parameter effects. Segments
of the RF passband are extracted by a single sideband
(SSB) demodulator with an appropriately set local oscillator
and low-pass filter. We consider only the two most widely
separated segments for which the synthesized time-delay
estimate is the ratio of the difference of phases (of two
selected segments) to the difference of center frequencies (of
these two segments). The individual channel group delay is
now only an auxiliary parameter. The effect of filter pole
motion on parameters estimated for the cross-correlation of
segments of the RF passbands was calculated at 10~7 doppler
using a single trace of the cross-correlation function for
local-oscillator (LO) frequencies ranging from 2250 to 2315
MHz. Results for frequencies outside of the passbands (2265
to 2300 MHz) in Fig. 2 are questionable because the noise
from the mixer-amplifier (3000 K) is becoming significant
with decreased gain and is not included in the calculations.

Variations in the final filter of the BWS demodulator (a
7-pole Butterworth at 2 MHz) must be considered in two
forms, depending upon whether a single filter is used and
time-multiplexed between segments of the passband, or
different filters are used in each segment. In either case, the
resultant effect is quite small, so a typical example will be
discussed instead of a range of results. For a common filter,
operating with LO’s of 2260 and 2300 MHz, the RSS of
differenced phase offsets for the 14 poles in these filters is
approximately 3.6 X 1073 rn, which indicates that a syn-
thesized delay offset of only 15 picoseconds should be
expected for component variations of one part in 102
(Table 2). If different filters are used with LO’s of 2260 and
2300 MHz, the RSS of the phase offsets for the 28 poles of
these filters is approximately 28 X 1073 n, which indicates
that a synthesized delay offset of 0.11 nanoseconds (3.3 cm)
should be anticipated for component variations of one part in
102. Assuming that manufacturing-related tolerances on the
order of one part in 102 are uncompensated and uncalibrated,
configuration-dependent offsets in the synthesized delay
(2260-2300) of 3-5 cm can be anticipated. As environmental
changes to the filters should be on the order of a part in 103,
changes in the synthesized delay should be less than 1 cm.

Variations in the quad-hybrid demodulator filters also
affect results differently, depending upon whether a single
demodulator is time-multiplexed between channels, or multi-
ple demodulators are used. Our calculations were performed
using very simple 4-pole quad-hybrids covering 0.1 to 2 MHz.
Since real quad-hybrids may have 12 or more poles (and
zeros), the offsets due to their variations are likely to be twice
what is observed numerically here. For a common demodu-
lator, operating with LO’s of 2260 and 2300 MHz, the RSS of
differenced phase offsets for the 8 poles in these demodulator

60

filters is approximately 0.43 X 10~3 rn, which indicates that a
synthesized delay offset of less than 2 picoseconds can result
from component variations of one part in 102 (Table 3). If
different demodulators are used with LO’s of 2260 and 2300
MHz, the RSS of the phase offsets for the 16 poles of these

filters is approximately 5.7 X 10~3 rn, which indicates that a

synthesized delay offset of about 23 picoseconds (0.7 cm) can
result from component variations of one part in 102.
Assuming that manufacturing-related tolerances on the order
of one part in 102 are uncompensated and uncalibrated,
configuration-dependent offsets in the synthesized delay
(2260-2300) of about 1 cm can be anticipated. Environmental
changes to the demodulator synthesized delay should be on
the order of 1 mm. Even if a realistic quad-hybrid, because of
its increased complexity, has variations of twice that of the
simple one used here, the offsets due to the quad-hybrid
parameters are still small (in an RSS-sense) compared to the
offsets due to the final filter parameters. This may, however,
be an overly simplistic view, as it ignores the active electronic
elements which interconnect the two filters in the quad-hybrid
to make up the demodulator proper. Testing of a complete
demodulator unit appears to be the best way to ensure a
realistic understanding of demodulator variations.

The effects of the maser-front-end amplifier variations are
always common between segments of the passband, and so are
relatively independent of whether a single time-multiplexed
demodulator and final filter or multiple ones are used. The
actual effects of these variations do depend significantly upon
the placement of the selected channel within the passband.
Figure 3 shows the channel group delay offset caused by a
change of one part in 10% in the imaginary parts of each of the
6 RF poles as a function of the LO frequency. The maximum
offset is on the order of 1 nanosecond, which is approximately
that observed in field experiments (Ref. 10), and lends
credence to the belief that anticipated physical variations
should be on the order of one part in 104. Figure 4 shows the
channel phase offset caused by a change of one part in 104 in
the imaginary parts of each of the 6 RF poles as a function of
the LO frequency. The data in Fig. 4 can also be presented as
in Fig. 5 which shows the RSS synthesized delay offset
resulting from filter pole variation of one part in 104 with
various selected spanned bandwidths, as indicated.

If we can anticipate variation in the maser-amplifier of one
part in 10%, we should anticipate a related synthesized
time-delay estimate offset between 0.2 and 0.5 ns. (6 to 15 cm
path length), which is variable and dependent upon environ-
mental factors. The offset observed is a function of the
placement of the selected channel within the passband, and it
appears that we are at least as likely as not in doing BWS to
select channels for which the sensitivity is 20 to 50% larger
than the sensitivity of the full band sampling. We note,



however, from Fig. 4 that the phase sensitivity decreases
outside of the main passband, so that if, for example, we could
successfully operate at 2255-2315, the sensitivity appears to
be only 0.034 ns for filter variations of one part in 104. These
results are related to the physical model assumed for TWM
variations, and should be verified experimentally.

We need also to be aware that we never really know the
receiving filters, as has been assumed in this section, but are
forced to estimate it through measurements and/or calibration.
The effect of channel estimation and calibration is the subject
of the next two sections.

V. Channel Modeling for
Bandwidth Synthesis

The intent of this section is to determine the minimum
complexity receiver models for the bandwidth synthesis VLBI
receiver which will yield suitably small errors in the resultant
estimates. We will, in the following, propose and evaluate
channel models of varying complexity. The results of this
section should not be construed as representing the perfor-
mance of any existing VLBI processing, although the tools
employed here can be applied to any existing or proposed
processing schemes.

The receiver passbands of Fig. 2 are again assumed to be the
RF-front-end filter. There is reason to believe that these
receivers represent a somewhat pathological choice, because
the mismatch between passbands, while an example of a real
experiment, is nevertheless a worse condition than should be
achieved in a “typical” experiment with careful tuning of the
traveling-wave masers (TWM). Therefore, we believe that if a
channel modeling scheme can be made to give some specific
level of accuracy with this example-pair of receiver passbands,
then this same level of accuracy should be achievable in
practice in most experiments.

The BWS final filter will be assumed to be a 2-MHz-wide
7-pole Butterworth. which is itself a practical approximation
to an ideal square passband. The assumed SSB demodulator is
the simple 4-pole R-C type used in Section IV.

The most naive channel model we are tempted to try is the
mathematical square passband. both with and without calibra-
tion. Calibration consists of a very stable and well-controlled
pulse train which is injected into the signal path ahead of the
maser (Ref. 11). In the frequency domain, this pulse train is

seen as a “comb” of pilot-tones with related phases, of which

at least one. or perhaps many may appear in each of the BWS
channels. If one tone appears in each channel, it is capable of
measuring (relative to itself) the phase of the local oscillator

and approximating the phase-effect of the receiving filters. A
second tone gives some information about the transport lag in
the receiving system. It also gives some information about the
relative amplitude of the receiving filters. Increasing the
number of tones in each channel improves the ability to
measure the transfer function of the receiver filters (Ref. 12).
We assume, for now, that the calibrator itself is “perfect.”

The models for which the bias offsets were calculated are of
two general types: “Type A” models incorporate a mathemati-
cally square 2-MHz passband with zero, one, or two pilot
tones; “Type B” models incorporate the transfer function of a
Butterworth filter and quad-hybrid demodulator, which is
nominally the same as that in the assumed receiver function,
along with zero, one, or two pilot tones. All demodulators
select upper sideband. Where one pilot tone is used, it is placed
0.5 MHz from the lower band-edge. Where two pilot tones are
used, they are placed 0.5 MHz from each band-edge. Models
Al and B1 utilize no pilot tones, but their calculation assumes
that the phase of the LO is stable and known, so that the only
unknown phase is that induced by the receiving filters. Models
A2 and B2 utilize one pilot tone to calibrate the phase shift
through the unknown receiver filters, and along with that, the
phase of the LO. Models A3 and B3 utilize two pilot tones to
jointly calibrate the phase shift and transport-lag equivalent of
the unknown receiver filters. Model B4 utilizes the relative
magnitudes of the filter responses to the two pilot tones to
estimate the parameters of single-tuned-filter approximation to
the RF filter H(s). The residual phases of these pilot tones are
then used to determine the phase-shift and transport-lag of the
receiver, as in Model B3.

As a practical matter, when two pilot tones are used in each
channel, their frequencies would be slightly displaced from the
multiples of 0.5 MHz in order to avoid harmonic interaction.

The Model B4 transfer function is of the form

. . STSHD
BAH(s) = srer (19)
(s-y-jx)(s-y+jx)

where the five parameters: 4, 7, ¢, y, and x are to be chosen to
best fit the amplitude and phase at each of two pilot tone
frequencies. Since there is one more unknown than measure-
ment, we complete the problem definition by assuming that
the bandwidth vy is as large as possible consistent with Eq.
(19), but not larger than some preset value y,. We have taken
Yo =40 Min/sec to correspond roughly to the individual poles
in Fig. 2. The approximate solution for the parameters x and y
is as follows: Let w, and w, be the (angular) pilot tone
frequencies, and let A=w, - w,. Let Hl, and H2 be the
measured complex response of the receiver passband at w, and
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w,, exclusive of the final filter and demodulator. Let the
preliminary values for x and y be x, = (w; +w,)/2 and y, as
above. Then we take

2 2
LA R IR
H2 Wl y(2) +(_x0 +w2)2
y =min {y,A-p/(p* - 1)} (20)
~A+ N p2A% - 2 (p2 - 1)
X = +

“ (b2~ 1)

to be our approximate solution to the magnitude part of Eq.
(19). The phase and delay parameters are determined after
inserting these x and y values into Eq. (19).

The offset between the parameter estimates for these
models and the assumed true receiver has been calculated using
a single trace of the cross-correlation function — usually
covering six lags. The phase is in all cases referenced to the
frequency at the passband center as determined from the
assumed receiver’s transfer function, and not from the
pilot-tone responses. In practice, this reference frequency
would be determined from the autocorrelation of the recorded
data.

Figure 6 shows the estimated differential phase offset for
all models at a doppler of 1,,-7 as a function of mixing
frequency. With no pilot tones, the offset phase swings by
nearly I radian as the mixing frequency traverses the frequen-
cies below 2270 MHz, where the two RF passbands show
significant missmatch. Were we to do delay synthesis using
2265-2305, a delay error of about 0.5 meter would resuit. A
single pilot tone is seen to be sufficient to reduce this swing to
about 0.1 rn, and the synthesized delay error to less than
about 10 cm. The use of transport-lag information from the
second pilot tone reduces the phase swing still further to
below 0.02 rn. And at this scale, model B4 appears perfect.

At an expanded scale, Figure 7 shows the offset phase as a
function of mixing frequency for models 2-4 at a doppler of
1,0-7. An identical figure would be drawn for any doppler
smaller than 1, ,-7. Increasing doppler, however, does change
the offset phase as can be seen by observing Figures 8, 9, and
10 which represent dopplers of 1,4-6, 3,,-6, and 1,45,
respectively. The largest differential doppler to be expected
for two Earth-bound receivers is on the order of 3,,-6. At
this doppler, al/l models have shown some phase shift relative
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to 1,,-7 doppler, and the Type-A models show phase shift
approaching 0.03 rn. The effect of doppler on synthesized
delay is not as large as on channel phase because the phase
shift is in the same direction in channels at all frequencies.
Figure 11 shows the synthesized delay offset for mixing

Lfrequencies 2260-2300 as a function of applied doppler. Model

B4 changes by only 0.01 ns (0.3 cm) for doppler changing
1,9-7 to 1,4-5. Model B3 changes by 0.05 ns (1.5 cm) and
models B2, A2, and A3 changes by 0.06 ns (1.8 cm) for
doppler increasing from 1,,-7 to 1,,-5. For real dopplers

restricted to below 3,,-6, the synthesized delay change is
negligible for model B4, and below 0.02 ns (0.6 em) for
models 2 and 3. The part of the synthesized delay offset which
does not depend on doppler is approximately 0.4 ns for the
No. 2 models, 0.05 ns for the No. 3 models, and apparently
negligible for model B4.

The “end-effects” from finiteness of the data record can be
greatly enhanced by considering parameter estimation for a
single-trace of the cross-correlation function which has been
asymmetrically truncated. Even with this exaggeration, model
B4 exhibits less than 1 cm synthesized delay offset
(2260-2300) when receiver and model final filters are perfectly
matched. For the more normal mode, sample calculations with
a record length of 15 sec and 10~7 doppler have exhibited no
end-effect variations with any model larger than 1 mm in
synthesized delay for perfectly matched receiver and model
final filters. End-effects should be reexamined with mis-
matched final filters.

In the foregoing, Type-B models have been generated
assuming that the transfer functions of the demodulator and
final filter are exactly known. At best, these filters are subject
to manufacturing tolerances, and at worst, the quad-hybrid
may be some company’s trade secret, and its transfer function
known to us only through our measurements. The exploration
of this space is similar to that of Section IV, but is
compounded by carrying several alternative models here. Some
exploration has been done which should approximate worst-
case for the demodulation filters. Figures 12 and 13 show the
estimated channel phase which results when the demodulator
transfer function of Station 1 only is scaled upward in
frequency by 10%, for dopplers of 1,,~7 and 1,6-5. The
shift to the No. 2 models’ phase is on the order of 0.01 rn and
varies with doppler and mixing frequency. The shift to the
phase of model B4, or No. 3, is of the order of 0.003 rn, and is
again dependent upon doppler and mixing frequency. Thus an
unlikely large error in our knowledge of the demodulator
filters results in a synthesized delay error which is at worst
1-2 cm for any of the pilot-tone models. If we try at all while
the equipment is being built, we should be able to know these
filters to within a few percent, and hence reduce errors related



to modeling of this portion of the equipment to less than 0.5
cm in synthesized delay.

Errors in generating and/or measuring the phase calibrator
tones cause channe! phase errors in the relatively obvious way.
Phase errors of 1072m on a calibration tone induce channel
phase errors of 0.5 to 2 X 10-2rn. Amplitude errors of 1% on
a calibration tone induce channel phase errors of roughly
10~3rn in model B4, with no effect on the other models.
There is thus a need to hold at least the differential phase
errors between the calibration tones in the upper and lower
bandwidth synthesis channels to well below 10~ 2rn if accur-
acies on the order of 1 cm are to be achieved with 40-MHz
spanned bandwidth. This requires careful design and fabrica-
tion of the calibrator itself, and SNR’s of at least 50-60 dB on
the detected calibration tones.

Assuming that a suitable calibrator can be achieved, we
summarize the results of this section as follows: If no
calibration is used, the receiver filters alone can represent as
much as a 1-meter offset in direct delay if the phases of the
mixing references are known. A single calibration tone in each
channel can reduce this offset to perhaps 10-15 c¢m, of which
only a few cm is doppler-dependent. Using two calibration
tones in each channel together with modeling technique B4
can further reduce this offset to under 1 cm. This last result
depends upon our knowing the final filter and demodulator
filters to within a few percent, and deserves to be reevaluated
using the actual transfer functions of a physical device, instead
of the “publication” filters employed here.

VI. Discussion and Summary

Perhaps the greatest difficulty in obtaining definitive results
for the biases induced by the VLBI instruments is the wide
range of possible configurations and parameter values which
can characterize the instrument. In such a situation, the

seemingly only way to get numerical results is to assume an
example system which is a reasonable approximation to reality
and evaluate its characteristics in detail. To the extent that our
example approximates some real system, our numerical results
can then be used with some care to estimate the behavior of
that system. Qur software tools may be useful for evaluating
systems which are not close to the examples developed here.

We evaluated the sensitivity of the VLBI estimated time
delay to plausible variations in the receiver filter parameters.
Shifts on the order of one part in 10% of the RF filter poles
induce delay errors of roughly 7 cm with full band sampling,
and between 6 and 15 cm with bandwidth synthesis. Shifts in
the 2-MHz channel filters used for bandwidth synthesis were
less deleterious than had been expected. Environmentally
caused shifts on the order of one part in 103 of the channel
filter poles induce delay errors of less than 1 cm. However, if
separate channel filters are used, a fabrication tolerance of
only one part in 102 could result in configuration-dependent
delay variations of 3-5 cm.

We studied the problem of modeling the channel passbands
for bandwidth synthesis. If the relative phases of the BWS
channel local oscillators are known, but we have no auxiliary
information about the phase shift in the filter, time delay
errors on the order of 0.5 to 1 m can result from these filters.
The use of an assumed-perfect calibrator can provide the
information needed about the RF filters to reduce this error
source to below | c¢m, as well as providing a definition point
for time delay if the local oscillator phases are unknown.

We are currently in the process of studying the problem of
modeling the passbands with full band sampling. In this case,
the information inherent in the data appears sufficient to
develop the RF filter models to within about 7 ¢m without
external calibration. The use of an assumed-perfect calibrator
appears to reduce this error source to well below 1 ¢m. Details
of these results should appear next issue.
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Appendix A

Expected Cross-Correlation Function
For VLBI Samples

Let the input to the it station sampler-limiter be expressed
asin Eq. (11),1e.,

14,
Ci(ti) =f g,-(fi‘qi"f?i) * cos (wi ‘ 'f?i‘"¢’,-)

i
: f h;(n;- &)

M [E(Et.“pi‘pil * E,-)"'ni(zi)J dzldn,

(A-1)

where g{ ), h( ) are impulse responses of the low-pass and
RF filters, g, is the sampler delay, cos(c, * n; + ¢,) is the local
oscillator mixing signal at time n;, and p,- p;; * § is the
locally linearized propagation delay at time £;, near to z,.

The cross-correlation function of the signals input to the
station’s sampler-limiters is defined by

R (1, 1) =L e, (t) c,(2,) ) (A-2)

where <> denotes ensemble average, and ¢, (¢,), c,(¢,) are as
defined by Eq. (9). We will use the two-dimensional Fourier
transform definitions of Papoulis (Ref. 13) to manipulate this
function:

a0 \= O, 170,1)
FC(]GI,]Gz)—j:itlfdtze R(t), 1)

_ ! OO
Rc([l’ t2) —(zﬂ)zfdglfd02 l-1C(101",92)

(A-3)

This form of the cross-correlation function is rapidly varying
in both coordinates. It is convenient for calculations to change
the coordinate system basis so that a form is obtained in which
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rapid variation is suppressed in at least one coordinate. Thus
define

Skt 1) =Rt t+T) (A-4)
The transform of S (- , -), by the definitions above, is
v (6, jn) = f dr f dr e O § (1, 7)

=T, +jn, in) (A-5)

It is of use to calculate R (- , -) the correlation function and
its transform at the input to the two receiving systems. The
signal e(r) is a white-noise process of density &, when it leaves
its source. The signals n,(z,) and n,(¢,) are independent white
noise processes of densities N, and V,. The desired correlation
and its Fourier transforms are

Rft;. 1) = nt)telt, ~(L-p,)-p,1}

Sy () relty - (L-py,)-p,] 1)

N
= 76 8 [t,(1-py)=py-t,(1 -py) tp,)]
(A-6)
1 —/'01!:_1:)2
FGé,j8,)=N,-n l—p“e 1
l-p
5 (91 21 —62) (A7)
I-p

These Fourier transforms will be extended by analytic
continuation to become LaPlace transforms on the complex
s-plane for manipulation of the filter functions. Inversion of
the extended transform is via integration along the Yw’ axis,
since no poles in a physically realizable filter function will fall
in the right-half-plane, or on the w axis.



Having completed these preparations, we are now able to
grind through the tedious, but not difficult, derivation of
S.(-, ). From Eq. (9), we can write by inspection the LaPlace
transforms C;(s;) at the limiter-sampler inputs:

as

-q5. 1] -je,; . .
Cls)=e 1= Gys) ) [e TH(s; T jwy) At Tw))

+jo. . .
te H(s;-jw) A, —]wl.)] (A-8)

for i = 1, 2, where A(s;) is the LaPlace transform of a(z)).
Likewise, we can write the product of c,(f,) and ¢,(z,), take
their expected value, and LaPlace transform in two dimensions
to obtain

_, 9% . t4y5, A
I’c(sl,s2)—e G,(s))e G, (-s,) 7

-j®
1 . . .
[e Hl(sI +]o.>1) Fa(s1 tjw,.s, ']‘*’2)
-j®
: 2
H2(—s2 +}w2)e

-i¢ . . .
+e 1Hl(s1 +]c,ol)l“a(s1 tjw,. s, +]w2)

+io
: : 2
H,(-s, -jw,)e

+j¢ , . .
te ]Hl(sl -jw, ) Ts, =jw.s, - jw,)

-Jjo
. 2
H,(-s, tjw, e

+j® . . .
te ‘Hl(sl —jw )T (s, —jw,, s, tjw,)

H, (=5, - jw,) €+f¢2] (A-9)

It should be noted that for any systems we are likely to build,
G(s;) are at least zonal low-pass, so that their response to
frequencies greater than w; is negligible. Also, we expect
w, ®w,, and from Eq. (A-7) we know that T (j0,,/0,) is
zero unless 6, =~ 0,. These facts combine to make the first and
fourth terms of the parenthesized factor in Eq. (A-9)
identically zero, which helps to simplify our succeeding algebra.

When rotated into the desired coordinates, the transformed
cross-correlation becomes

(

-q(6+n) q,m 1
Vv (6m) =e TG (0+me t Gylm)

-jo
. [e 1H1(0 tntjw,)
. . | tie,
L0 +ntjw ntjw,)H,(-n-jw,)e
oy , . .
te T H(0+tn-jw)l (6 tn-jw . n-jw,)

H,(-n+je,) e—mz] (A-10)

We now define the partially-inverse LaPlace transform of
¥ (-, ) with respect to its first argument as

+joo
\l/:(z‘, n) = L f i Y (0,mdd  (A-11)

2nj )
joo

To evaluate this integral, we insert the definition of I' (-, -)
into Eq. (A-10) where the factors I',(0 + 1 jw,,n tjw,) are
obtained by substituting 6 + n £ jw, for j6,, and 5 * jw, for
j0, in Eq. (A-7), where the sign affixed to the mixing
frequency is determined from the term selected in Eq. (A-10).
We integrate by using the definition of the delta function —
that its integral with respect to its argument has value unity,
and that the entirety of this integral arises where the argument
itself is zero, i.e., at

1~p21

ntjw, = (0tntjw)) (A-12)

pll

or

P, ~P
21 11) (A-13)
1 21

§ = *jlw, - w)t(ntjw,) <

By collecting terms, this integral becomes
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e—j(w21+¢2—w 1 t—¢1)

g, (w, ot -0
.e 1 21“[)21 1

—(n=jw ) (1’1‘1’2 + tP11‘P21)
27\

*e “Pyy 1-p7)

. . L-r,
*H, (-n+jw,)*H |(n-jw,) _—
21

. L-ryy
G, (n—/wZ)l_p tiw,

21

+Hi(w, t+P, ~—w -9 .)
te 27T

) 1-p
e P11

(i) (Pl‘pz N ,P11‘P21>
I()' 2

1-py 1-Py4

-1y
“H(n-jwy) cHy | (ntiw,)
L-p,,

l-p

y ,w)
BEAed |
l-p,,

The two terms discarded from Egq. (A-10) could be developed
in an identical fashion, should the receiver configuration
warrant their inclusion.

.Gl ((7] +jw2) (A-14)

The desired correlation function is developed from gbZ(r,n)
by transforming on n:

+joo
o o
Sc(t,‘r) = —Z;J-J‘ e d/c(t, n)dn. (A-15)
—joo

We can simplify the appearance of the following equations by
inserting the auxiliary variables ¢, and 75 which are them-
selves functions of ¢ and 7.
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P-p by -p
S U SO U BL)

T, =T+q -q
3 1 2
- P L-p,y  1-pyy
P,-P, Py Py
¢3=w2[+¢2—w1[—¢1—w2(1 +[1
=Py ~ Py
1-p,,
-q,\w, -w, (A-16)
1—p21
This makes

N 1

e

+joo
) _ dn ~n7g
S.(7,6,:47) = f "G ()

g 1-p, 2m

Jeo

-i¢
: {e *H,(-ntiw,)

[ . l‘pl
H [(ntjw,)
L =Py
[ l'pll .
-G, |(riw,) -jo, | § (A17)
- 1- 21 !

When the filters G (s), H{s) are expressed as rational polyno-
mials in s, the integral in Eq. (A-17) is evaluated via the
Heaviside expansion theorem into a sum of exponentials in
n7, evaluated at the poles of G(s), H{s). If 73 <0, the
integral is 2 normal inverse LaPlace integral, for which the
selected poles are in the left-half plane, and are those of G,(s),
H,(s). If 74 > 0, the integral is an inverse LaPlace integral for
negative time, which selects poles in the righr-half plane,
namely, those of G,(-s), H,(-s).



The autocorrelation of either ¢,(f;) or c,(z,) can be
written by inspection from the cross-correlation

N.+N [t
- i e d‘n -nt
Aci(t, 7) 3 f —27_(]. e

-
(G, (-mH (-1 * jew)H (n - jw )G, (n)

+G(-mH (-n - jw)H (n+]jw)G ()] (A-18)

The autocorrelations will be used in computing the cross-
correlation at the output of the limiters.

Let x, y be two gaussian random variables, and let L(x)
denote the limiter function that is -1 if x <0, and +1
otherwise. Then it is easy to establish that

L)L) D = {Lx 1)

= %Amsin((x sy INKx e x Dy y>)

(A-19)

where < e > denotes ensemble average. Note that ¢,(z,)
and c,(r,) are gaussian random variables for any particular
values of f;, ¢,, and hence Eq. (A-19) applies to the
computation of the expected cross-correlation of the output
of the limiters. In almost all cases of interest to VLBI, the
correlated noise from the radio source is a very small part of
the total noise at the receiver,ie., N, <<N;+ N, fori=1, or
2, so that a lnear approximation to the Arcsin () in Eq.
(A-19) is adequate. Thus, if we denote as S;(----) the
cross-correlation of the limiter-output signals, then

2 S (75.05:4,7)
/A (00)-4_,0)

(A-20)

SL(7'3,¢31 t,7)

The variance of each S, (- - - -) is unity, since the magnitude
of L(x) is identically one. The covariance of S, (- -: ¢,7) will be
needed for SNR calculations.
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Appendix B

Square Passband Filters

We can obtain at least a partial check on the derivation
from Appendix A by reverting to the special case of square
passbands with single-sideband demodulators, for which a
simpler derivation is possible. Let

1 for |x|<o.>1,o.>2
G Gx) =
0 elsewhere
(B-1)
1 forwl.<|xl<wl-+Bi

o

elsewhere

where B, is the bandwidth of the supposed square-passband
filters. Denote by SSQ(~ -+ ) the form assumed by S.(----)
for this special case.

-¢ - an nr
1. % 3 i
e f = (B-2)
-jB
where
b = max §0, w, - w
1 -p,, 1 2
and
B B P2 (w, +B }
= min s w, t -w
1 2 -p,, 1 1 2

The execution of these integrals results in the anticipated
sin(x)/x form;i.e.,

N
aaYe. 11 1 (B-b
Sgo(T3:05:4.7) s Tory o - sm( 3 73)
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.cos(B;bra—q)a) (B-3)

Equation (B-3) describes a cross-correlation with a magnitude
and phase factor. If we let ¢, be the argument of the phase
factor, we can collect terms in ¢, to place it into the form:

¢, = ) 737 ¢

¢4 B+b) .pll—pll.t

+ - + +
o tHw, - w,) (w2 3 [-p,,

B+b

+
2

T (B-4)

where ¢, is an undetermined phase angle. This corresponds
with the “fringe phase” of Thomas (Ref. 14), if w, +(B +b)/2
is interpreted as the “center of the doppler-shifted passband”
at RF.

The autocorrelation of either receiver output is

)
NN, o sin\l—7 (Bi
tmot—————*CoS

ASQi(t,T) = 57 - -2“ T) (B-S5)

If we denote as SLQ(~ - - -} the cross-correlation at the output
of the limiters with square passband filters, and use Eq. (B-5)
with the weak-signal approximation to Eq. (A-19),

. [(B-b
Ne 2/TT sin —2T3
VNN, 1-py, /BB,

2 s
+
* COS (sz73'¢3)

is the expected value of the cross-correlation function
observed in VLBI processing.

SLQ(T3,d3Z[,T) =

(B-6)
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Tabie 1. Offset in estimated group delay and phase for 1 104
offset in filter pole position with full band sampling

Pole no. A delay, ns A phase, rn
la -0.099 0.0067
1b -0.027 0.0135
1c 0.124 0.0079
2a 0.032 -0.0068
2b 0.099 -0.0130
2¢ -0.132 -0.0081
RSS (all) 0.23 0.024

Table 2. Change in estimated channel phase for 1,,—-2 change

in final filter pole position. (Rn x 10-3)

Pole Phase at 2260 Phase at 2300 |Ag|
la 3.34 3.18 0.16
1b 5.07 4.66 0.41
ic 1.91 1.90 0.01
1d 1.27 0.80 0.47
le 6.71 6.33 0.38
1f -1.62 -1.74 0.12
lg 11.2 9.13 2.1
2a -3.65 -3.17 0.48
2b -5.45 -4.65 0.80
2c -2.15 -1.89 0.26
2d -1.12 -0.80 0.32
2e -7.47 -6.30 1.17
2f 2.15 1.72 0.43
2g -11.9 -9.11 2.8
RSS 22.2 18.0 3.6

Table 3. Change in estimated channel phase for 110—2 change
in quad-hybrid filter pole positions (rn x 10-3)

Pole Phase at 2260 Phase at 2300 1Ag|
la 0.323 0.405 0.08
1b 1.69 1.82 0.13
lc 1.07 1.31 0.28
1d 1.79 1.73 0.06
2a -0.376 -0.404 0.03
2b -1.92 -1.81 0.11
2¢ -1.24 -1.30 0.06
2d -1.97 -1.72 0.25

RSS 4.08 4.03 0.43




